Adapunrumus luas setengah lingkaran adalah (π x r x r)/2. Contoh soal: Sebuah lingkaran memiliki jari-jari 10 cm, maka luas setengah lingkaran adalah Jawaban: Rumus setengah lingkaran adalah (π x r x r)/2. Maka L = (3,14 x 10 x 10)/2 = 157 cm2. Jadi, luas setengah lingkaran tersebut adalah 157 cm2.
TabungTertutup adalah sebuah tabung yang seluruh bidang dan sisi - sisinya tertutup. Rumus volume gabungan tabung dan setengah bola yaitu π.r².t+2/3. π.r3 Rumus luas gabungan tabung dan setengah bola Jari-jari tabung memenuhi persamaan berikut. Dari hasil faktor persamaan dapat diuji.
Sejarah Peraturan, Ukuran Dan Tehnik Dasar Bola Voli. Bola voli merupakan permainan bola besar berkelompok yang di mainkan oleh 2 tim yang saling berhadapan di mana masing masing tim terdiri dari 6 orang pemain. Adapun lama permainan bola voli di tentukan oleh jumlah set, di mana set akan berakhir jika salah satu tim telah mencapai angka 25 poin.
. - Cek referensi kunci jawaban Matematika kelas 9 halaman 303 hingga 305 berikut tentang menghitung bola. Diharapkan siswa Kelas 9 SMP sebelum melihat kunci jawaban Matematika kelas 9 halaman 303 , 304, 305 untuk memahami materi bola untuk menjawab 10 soal yang tersedia. Tidak menutup kemungkinan pada kunci jawaban Matematika kelas 9 halaman 303 hingga 305 berikut terdapat kesalahan penghitungan. Pada 10 soal berikut tentang menghitung bola terdapat di dalam materi Matematika Kelas 9 SMP Bab 5 Bangun Ruang Sisi Lengkung. Di Bab 5 Bangun Ruang Sisi Lengkung ini, siswa Kelas 9 SMP tak hanya mempelajari menghitung bola, melainkan juga kerucut dan tabung. Baca juga Contoh Soal dan Kunci Jawaban UTS atau PTS Matematika Kelas 9 SMP Semester 2 Pilihan Ganda Siswa Kelas 9 SMP usai mempelajari materi ini diharapkan mampu 1. Mengenali bangun tabung, kerucut dan bola beserta unsur-unsurnya 2. Menentukan jaring-jaring tabung, kerucut dan bola 3. Mengidentifikasi luas permukaan tabung, kerucut dan bola 4. Menentukan hubungan antara luas alas dan tinggi dengan volume 5. Mengidentifikasi volume tabung, kerucut dan bola 6. Menyelesaikan permasalahan nyata Simak berikut referensi kunci jawaban Matematika kelas 9 halaman 303 hingga 305 yang dikutip dari Tribunnews. Latihan Bola 1. Tentukan luas permukaan dan volume bangun bola berikut. Jawaban Gunakan rumus luas permukaan dan volume bola. Jika diketahui diameter ubah menjadi jari-jari. Volume bola = 4/3 x π × r3Luas permukaan bola = 4 × π × r2 a Luas = 4 x π x 12 x 12= 576π m2 Volume = 4/3 x π x 12 x 12 x 12= 2304π m3 b Luas = 4 x π x 5 x 5= 100π cm2 Volume = 4/3 x π x 5 x 5 x 5= 500/3π cm3 c Luas = 4 x π x 6 x 6= 144π dm2 Volume = 4/3 x π x 6 x 6 x 6= 288π dm3 d Luas = 4 x π x 4,5 x 4,5= 81π cm2 Volume = 4/3 x π x 4,5 x 4,5 x 4,5= 243/2π cm3 e Luas = 4 x π x 10 x 10= 400π m2 Volume = 4/3 x π x 10 x 10 x 10= 4000/3π m3 f Luas = 4 x π x 15 x 15= 900π m2 Volume = 4/3 x π x 15 x 15 x 15= 4500π m3 Baca juga Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 144, 145, 146, 147, Menghitung Prisma 2. Berapakah luas permukaan bangun setengah bola tertutup berikut Jawaban Volume setengah bola = 4/3 x π × r3 / 2Luas permukaan setengah bola = 4 × π × r2 / 2 + π × r2 a Luas = 48π cm2Volume = 128/3π cm3 b Luas = 432π cm2Volume = cm3 c Luas = 108π cm2Volume = 144π cm3 d Luas = 192π m2Volume = m3 e Luas = 675/4π m2Volume = m3 f Luas = 363π dm2Volume = dm3 3. Dari soal-soal nomor 2 tentukan rumus untuk menghitung luas permukaan setengah bola tertutup. Jawaban Luas permukaan stengah bola = 1/2 luas permukaan bola + luas lingkaran= 1/2 4πr2 + πr2= 3πr2 4. Tentukan jari-jari dari bola dan setengah bola tertutup berikut. Jawaban a L = 4 × π × r2729π = 4 x π x r2r = √729/4r = 27/2 cm b V = 4/3 x π × = 4/3 x π x r3r3 = x 3/4r = 12 cm c V = 4/3 x π × r336π = 4/3 x π x r3r3 = 36 x 3/4r = 3 cm d L = 3 × π × r227π = 4 x π x r2r = √27/3r = 3 m e L = 3 × π × r245π = 3 x π x r2r = √45/3r = √15 m f V = 2/3 x π × r3128/3π = 2/3 x π x r3r3 = 128/3 x 3/2r = 4 m Baca juga Kunci Jawaban Matematika Kelas 8 Halaman 113, 114, 115, 116 Semester 2, Menghitung Lingkaran 5. Berpikir suatu bola dengan jari-jari r cm. Jika luas permukaan bola tersebut adalah A cm2 dan volume bola tersebut adalah A cm3, tentukan a. nilai rb. nilai A Jawaban a Luas permukaan = 4πr2Volume = 4/3 πr34πr2= 4/3 πr3r = 3 cm b Luas permukaan = 4πr2= 4π32= 36π 6. Bangun di samping dibentuk dari dua setengah bola yang sepusat. Setengah bola yang lebih kecil memiliki jari-jari r1 = 4 cm sedangkan yang lebih besar memiliki jari-jari r2 = 8 cm. Tentukan a. luas permukaan bangun tersebut,b. volume bangun tersebut. Jawaban a. Luas permukaan = 1/2 luas permukaan bola besar x 1/2 luas permukaan bola kecil + luas lingkaran besar - luas lingkaran kecil= ½ . 4π82 + ½ × 4π42 + π82 – π42= 128π + 32π + 64π – 16π= 208π cm2 b. Volume = Volume setengah bola besar – volume setengah bola kecil= 2/3 π83 – 2/3 π43= 2/3 π512 – 64= 2/3 π × 448= 896/3 π cm3 7. Analisis kesalahan. Lia menghitung luas permukaan bola dengan cara membagi volume bola dengan jari-jari bola tersebut L = V/r. Tentukan kesalahan yang dilakukan oleh Lia. Jawaban L = 4πr2, V = 4/3 πr3 Sehingga V = Lr/3, yang berakibat L = 3V/r 8. Bola di dalam kubus. Terdapat suatu kubus dengan panjang sisi s cm. Dalam kubus tersebut terdapat bola dengan kondisi semua sisi kubus menyentuh bola a. Tentukan luas permukaan bola Tentukan volume bola tersebut. Petunjuk tentukan jari-jari bola terlebih dahulu. Jawaban Karena semua sisi kubus menyentuh bola maka diameter bola = s, jari-jari bola = s/2 a Luas permukaan bola = 4 × π × r2= 4 x π x s/2 x s/2= πs2 cm2 b Volume bola = 4/3 x π × r3= 4/3 x π x s/2 x s/2 x s/2= πs3/6 cm3 9. Kubus di dalam bola. Terdapat suatu kubus dengan panjang sisi s cm. Kubus tersebut berada di dalam bola dengan kondisi semua titik sudut kubus menyentuh bola. a. Tentukan luas permukaan bola tersebutb. Tentukan volume bola tersebut Petunjuk tentukan jari-jari bola terlebih dahulu Jawaban Diagonal bidang kubus = diameter bola, diperoleh r = 1/2√3s a Luas = 4πr2= 4π1/2√3s2= 3πs2 cm2 b Volume = 4/3πr3= 4/3π1/2√3s3= 1/2√3πs3 cm3 10. Timbangan dan kelereng. Andi punya dua macam kelereng. Kelereng tipe I berjari-jari 2 cm sedangkan tipe II berjari-jari 4 cm. Andi melakukan eksperimen dengan menggunakan timbangan. Timbangan sisi kiri diisi dengan kelereng tipe I sedangkan sisi kanan diisi dengan kelereng tipe II. Tentukan perbandingan banyaknya kelereng pada sisi kiri dengan banyaknya kelereng pada sisi kanan agar timbangan tersebut seimbang Jawaban Misalkan banyaknya kelereng tipe I adalah m sedangkan tipe II adalah n. V1 = 4/3π23 = 32/3π cmV2 = 4/3π43 = 256/3π cm m x V1 = n x V2πm x 32/3π = n x 256/3πm = 8n Sehingga, perbandingan banyak kelereng pada sisi kiri dengan sisi kanan agar seimbang adalah 8 1. * Disclaimer - Artikel ini hanya ditujukan kepada orang tua untuk memandu proses belajar anak. - Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. * BERITA PENDIDIKAN BERITA BEASISWA
Jawaban Latihan Halaman 303 MTK Kelas 9 Bangun Ruang Sisi LengkungLatihan Halaman 303-305. A. Soal Pilihan Ganda PG dan B. Soal Uraian Bab 5 Bangun Ruang Sisi Lengkung, Matematika MTK, Kelas 9 / IX SMP/MTS. Semester 1 K13Jawaban Latihan Matematika Kelas 9 Halaman 303 Bangun Ruang Sisi LengkungJawaban Latihan Matematika Halaman 303 Kelas 9 Bangun Ruang Sisi LengkungJawaban Latihan Halaman 303 MTK Kelas 9 Bangun Ruang Sisi LengkungBuku paket SMP halaman 303 Latihan adalah materi tentang Bangun Ruang Sisi Lengkung kelas 9 kurikulum 2013. Terdiri dari 10 ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 303 - 305. Bab 5 Bangun Ruang Sisi Lengkung Latihan Hal 303 - 305 Nomor 1 - 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 9 di semester 1 halaman 303 - 305. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 9 dapat menyelesaikan tugas Bangun Ruang Sisi Lengkung Kelas 9 Halaman 303 - 305 yang diberikan oleh bapak ibu/guru. Kunci Jawaban MTK Kelas 9 Semester Jawaban Matematika Kelas 7 Halaman 303 Ayo Kita Berlatih semester 1 k13Bangun Ruang Sisi Lengkung Latihan Tentukan jari-jari dari bola dan setengah bola tertutup a L = 4 × π × r²729π = 4 x π x r²r = √729/4r = 27/2 cmb V = 4/3 x π × = 4/3 x π x r³r³ = x 3/4r = 12 cmc V = 4/3 x π × r³36π = 4/3 x π x r³r³ = 36 x 3/4r = 3 cmd L = 3 × π × r²27π = 4 x π x r²r = √27/3r = 3 me L = 3 × π × r²45π = 3 x π x r²r = √45/3r = √15 mf V = 2/3 x π × r³128/3π = 2/3 x π x r³r³ = 128/3 x 3/2r = 4 mJawaban Latihan Halaman 303 MTK Kelas 9 Bangun Ruang Sisi LengkungPembahasan Latihan Matematika kelas 9 Bab 5 K13
BerandaTentukan jari-jari dari setengah bola tertutup ber...PertanyaanTentukan jari-jari dari setengah bola tertutup berikut. f. IKI. KumaralalitaMaster TeacherMahasiswa/Alumni Universitas Gadjah MadaPembahasanDiketahui volume dari setengah bola tertutup besarnya . Jari-jari bola tersebut adalahDiketahui volume dari setengah bola tertutup besarnya . Jari-jari bola tersebut adalah Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!232Yuk, beri rating untuk berterima kasih pada penjawab soal!AHAgustina Hariyati Pembahasan lengkap banget©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
JawabJari-jarinya 4 mLp = 48π m²Penjelasan dengan langkah-langkahJika setengah bolaV = ¹²⁸/₃π m³Tentukan jari-jari rV = ²/₃πr³¹²⁸/₃π = ²/₃πr³²/₃π64 = ²/₃πr³r³ = 64r = ∛64r = 4 mJari-jarinya 4 mLuas permukaannya =3r²π = 34²π = 316π =48π m²Lp = 48π m²[[ KLF ]] F. L = 2πr²128/3π = 2πr²r² = 128/ 2 × 3r² = 21,3r = √21,3r = 4,6 CmJadi Jari-Jari Bola Dan Setengah Bola Tertutup Tersebut Adalah 4,6 Cm. ~Opung~
Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 303 - 305. Bab 5 Bangun Ruang Sisi Lengkung Latihan Hal 303 - 305 Nomor 1 - 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 9 di semester 1 halaman 303 - 305. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 9 dapat menyelesaikan tugas Bangun Ruang Sisi Lengkung Kelas 9 Halaman 303 - 305 yang diberikan oleh bapak ibu/guru. Kunci Jawaban MTK Kelas 9 Semester Latihan Halaman 303 Matematika Kelas 9 BolaKunci Jawaban Matematika Kelas 9 Halaman 303 - 305 Latihan Tentukan luas permukaan dan volume bangun bola Volume bola = 4/3 x π × r³Luas permukaan bola = 4 × π × r²a Luas = 4 x π x 12 x 12= 576π m²Volume = 4/3 x π x 12 x 12 x 12= 2304π m³b Luas = 4 x π x 5 x 5= 100π cm²Volume = 4/3 x π x 5 x 5 x 5= 500/3π cm³c Luas = 4 x π x 6 x 6= 144π dm²Volume = 4/3 x π x 6 x 6 x 6= 288π dm³d Luas = 4 x π x 4,5 x 4,5= 81π cm²Volume = 4/3 x π x 4,5 x 4,5 x 4,5= 243/2π cm³e Luas = 4 x π x 10 x 10= 400π m²Volume = 4/3 x π x 10 x 10 x 10= 4000/3π m³f Luas = 4 x π x 15 x 15= 900π m²Volume = 4/3 x π x 15 x 15 x 15= 4500π m³2. Berapakah luas permukaan bangun setengah bola tertutup Volume setengah bola = 4/3 x π × r³ / 2Luas permukaan setengah bola = 4 × π × r² / 2 + π × r²a Luas = 48π cm²Volume = 128/3π cm³b Luas = 432π cm²Volume = cm³c Luas = 108π cm²Volume = 144π cm³d Luas = 192π m²Volume = m³e Luas = 675/4π m²Volume = m³f Luas = 363π dm²Volume = dm³3. Dari soal-soal nomor 2 tentukan rumus untuk menghitung luas permukaan setengah bola Luas permukaan stengah bola = luas permukaan bola/2 + luas lingkaran = 4πr²/2 + πr²= 3πr²4. Tentukan jari-jari dari bola dan setengah bola tertutup a L = 4 × π × r²729π = 4 x π x r²r = √729/4r = 27/2 cmb V = 4/3 x π × = 4/3 x π x r³r³ = x 3/4r = 12 cmc V = 4/3 x π × r³36π = 4/3 x π x r³r³ = 36 x 3/4r = 3 cmd L = 3 × π × r²27π = 4 x π x r²r = √27/3r = 3 me L = 3 × π × r²45π = 3 x π x r²r = √45/3r = √15 mf V = 2/3 x π × r³128/3π = 2/3 x π x r³r³ = 128/3 x 3/2r = 4 m5. Berpikir suatu bola dengan jari-jari r cm. Jika luas permukaan bola tersebut adalah A cm2 dan volume bola tersebut adalah A cm3, tentukanJawaban a Luas permukaan = 4πr² Volume = 4/3 πr³ 4πr² = 4/3 πr³ r = 3 cmJadi, nilai r adalah 3 Luas permukaan = 4πr² = 4π3² = 36πJadi, nilai A adalah Bangun di samping dibentuk dari dua setengah bola yang sepusat. Setengah bola yang lebih kecil memiliki jari-jari r1 = 4 cm sedangkan yang lebih besar memiliki jari-jari r2 = 8 7. Analisis kesalahan. Lia menghitung luas permukaan bola dengan cara membagi volume bola dengan jari-jari bola tersebut L = V/r.Jawaban L = 4πr², V = 4/3 πr³. Sehingga V = Lr/3, yang berakibat L = 3V/r8. Bola di dalam kubus. Terdapat suatu kubus dengan panjang sisi s cm. Dalam kubus tersebut terdapat bola dengan kondisi semua sisi kubus menyentuh bola lihat gambar di samping.Jawaban Karena semua sisi kubus menyentuh bola maka diameter bola = s, jari-jari bola = s/2a Luas permukaan bola = 4 × π × r²= 4 x π x s/2 x s/2= πs² cm²b Volume bola = 4/3 x π × r³= 4/3 x π x s/2 x s/2 x s/2= πs³/6 cm³9. Kubus di dalam bola. Terdapat suatu kubus dengan panjang sisi s cm. Kubus tersebut berada di dalam bola dengan kondisi semua titik sudut kubus menyentuh Diagonal bidang kubus = diameter bola, diperoleh r = 1/2√3sa Luas = 4πr² = 4π1/2√3s²= 3πs² cm²b Volume = 4/3πr³= 4/3π1/2√3s³= 1/2√3πs³ cm³10. Timbangan dan kelereng. Andi punya dua macam kelereng. Kelereng tipe I berjari-jari 2 cm sedangkan tipe II berjari-jari 4 Misalkan banyaknya kelereng tipe I adalah m sedangkan tipe II adalah = 4/3π2³ = 32/3π cm V2 = 4/3π4³ = 256/3π cm m x V1 = n x V2πm x 32/3π = n x 256/3πm = 8nJadi, perbandingan banyak kelereng pada sisi kiri dengan sisi kanan agar seimbang adalah 8 1.
tentukan jari jari dari bola dan setengah bola tertutup berikut